

THE DESIGN OF THE POSTGRES STORAGE SYSTEM

by

Michael Stonebraker

Memorandum No. UCB/ERL M87/6

4 February 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE DESIGN OF THE POSTGRES STORAGE SYSTEM

Michael Stonebraker

RECS Department
University of California

Berkeley, Ca., 94720

Abstract

This paper presents the design of the storage system for the POSTGRES data
base system under construction at Berkeley. It is novel in several ways. First, the
storage manager supports transaction management but does so without using a
conventional write ahead log (WAL). In fact, there is no code to run at recovery
time, and consequently recovery from crashes is essentially instantaneous. Second,
the storage manager allows a user to optionally keep the entire past history of
data base objects by closely integrating an archival storage system to which histor-
ical records are spooled. Lastly, the storage manager is consciously constructed as
a collection of asynchronous processes. Hence, a large monolithic body of code is
avoided and opportunities for parallelism can be exploited. The paper concludes
with a analysis of the storage system which suggests that it is performance com-
petitive with WAL systems in many situations.

I. INTRODUCTION

The POSTGRES storage manager is the collection of modules that provide
transaction management and access to data base objects. The design of these
modules was guided by three goals which are discussed in turn below. The first
goal was to provide transaction management without the necessity of writing a
large amount of specialized crash recovery code. Such code is hard to debug, hard
to write and must be error free. If it fails on an important client of the data
manager, front page news is often the result because the client cannot access his
data base and his business will be adversely affected. To achieve this goal,
POSTGRES has adopted a novel storage system in which no data is ever overwrit-
ten; rather all updates are turned into insertions.

The second goal of the storage manager is to accomodate the historical state of
the data base on a write-once-read-many (WORM) optical disk (or other archival
medium) in addition to the current state on an ordinary magnetic disk. Conse-
quently, we have designed an asynchronous process, called the vacuum cleaner

This reserrch was sponsored by the Navy Electronics Systems Command under con-
tract N00039-84-C-0039.

I

which moves archival records off magnetic disk and onto an archival storage sys-
tem.

The third goal of the storage system is to take advantage of specialized
hardware. In particular, we assume the existence of non-volatile main memory in
some reasonable quantity. Such memory can be provide through error correction
techniques and a battery-back-up scheme or from some other hardware means. In
addition, we expect to have a few low level machine instructions available for spe-
cialized uses to be presently explained. We also assume that architectures with
several processors will become increasingly popular. In such an environment,
there is an opportunity to apply multiple processors to running the DBMS where
currently only one is utilized. This requires the POSTGRES DBMS to be changed
from the monolithic single-flow-of-control architectures that are prevalent today to
one where there are many asynchronous processes concurrently performing DBMS
functions. Processors with this flavor include the Sequent Balance System
(SEQU85], the FIREFLY, and SPUR [HILL85].

The remainder of this paper is organized as follows. In the next section we
present the design of our magnetic disk storage system. Then, in Section 3 we
present the structure 'nd concepts behind our archival system. Section 4 continues
with some thoughts on efficient indexes for archival storage. Lastly, Section 5
presents a performance comparison between our system and that of a conventional
storage system with a write-ahead log (WAL) [GRAY78].

2. THE MAGNETIC DISK SYSTEM

2.1. The Transaction System

Disk records are changed by data base transactions, each of which is given a
unique transaction identifier (XID). XIDs are 40 bit unsigned integers that are
sequentially assigned starting at I. At 100 transactions per second (TPS),
POSTGRES has sufficient XIDs for about 320 years of operation. In addition, the
remaining 8 bits of a composite 48 bit interaction identifier (lID) is a command
identifier (CID) for each command within a transaction. Consequently, a transac-
tion is limited to executing at most 256 commands.

In addition there is a transaction log which contains 2 bits per transaction
indicating its status as:

committed
aborted
in progress

A transaction is started by advancing a counter containing the first unassigned
XID and using the current contents as a XIM. The coding of the log has a default
value for a transaction as "in progress" so no specific change to the log need be
made at the start of a transaction. A transaction is committed by changing its
status in the log from "in progress" to "committed" and placing the appropriate
disk block of the log in stable storage. Moreover, any data pages that were
changed on behalf of the transaction must also be placed in stable storage. These
pages can either be forced to disk or moved to stable main memory if any is avail-
able. Similarly, a transaction is aborted by changing its status from "in progress"
to "aborted".

2

The tail of the log is that portion of the log from the oldest active transaction
up to the present. The body of the log is the remainder of the log and transac-
tions in this portion cannot be "in progress" so only 1 bit need be allocated. The
body of the log occupies a POSTGRES relation for which a special access method
has been built. This access method places the status of 65536 transactions on each
POSTGRES 8K disk block. At 1 transaction per second, the body increases in size
at a rate of 4 Mbytes per year. Consequently, for light applications, the log for the
entire history of operation is not a large object and can fit in a sizeable buffer pool.
Under normal circumstances several megabytes of memory will be used for this
purpose and the status of all historical transactions can be readily found without
requiring a disk read.

In heavier applications where the body of the log will not fit in main memory,
POSTGRES applies an optional compression technique. Since most transactions
commit, the body of the log contains almost all "commit" bits. Hence, POSTGRES
has an optional bloom filter [SEVR76] for the aborted transactions. This tactic
compresses the buffer space needed for the log by about a factor of 10. Hence, the
bloom filter for heavy applications should be accomodatable in main memory.
Again the run-time system need not read a disk block to ascertain the status of
any transaction. The details of the bloom filter design are presented in [STON86].

The tail of the log is a small data structure. If the oldest transaction started
one day ago, then there are about 86,400 transactions in the tail for each 1 tran-
saction per second processed. At 2 bits per entry, the tail requires about 11,000
bytes per transaction per second. Hence, it is reasonable to put the tail of the log
in stable main memory since this will save the pages containing the tail of the log
from being forced to disk many times in quick succession as transactions with
similar transaction identifiers commit.

2.2. Relation Storage

When a relation is created, a file is allocated to hold the records of that rela-
tion. Such records have no prescribed maximum length, so the storage manager is
prepared to process records which cross disk block boundaries. It does so by allo-
cating continuation records and chaining them together with a linked list. More-
over, the order of writing of the disk blocks of extra long records must be carefully
controlled. The details of this support for multiblock records are straightforward,
and we do not discuss them further in this paper. Initially, POSTGRES is using
conventional files provided by the UNIX operating system; however, we may
reassess this decision when the entire system is operational. If space in a file is
exhausted, POSTGRES extends the file by some multiple of the SK page size.

If a user wishes the records in a relation to be approximately clustered on the
value of a designated field, he must declare his intention by indicating the
appropriate field in the following command

cluster rel-name <order> on ((field-name using operator)l

If the optional "order" keyword is present then POSTGRES will attempt to keep
the records approximately in sort order on the field name(s) indicated using the
specified operator(s) to define the linear ordering. This will allow clustering secon-
dary indexes to be created as in [ASTR76]. If "order" is absent, POSTGRES will

jl attempt to place any two records for which

3

. v---- -:w-

value-i of field-names) operator(s) value-2 of field-name(s)

is true close to each other physically on the disk. This will accomodate clustering
indexes which have a hashing orientation.

Each disk record has a bit mask indicating which fields are non-null, and only
these fields are actually stored. In addition, because the magnetic disk storage sys-
tem is fundamentally a versioning system, each record contains an additional 8
fields:

OlD a system-assigned unique record identifier
Tmin the time at which the record became valid
Xmin the transaction identifier of the interaction inserting the record
Cmin the command identifier of the interaction inserting the record
Tmax the time at which the record stopped being valid
Xmax the transaction identifier of the interaction deleting the record
Cmax the command identifier of the interaction deleting the record
PTR a forward pointer

When a record is inserted it is assigned a unique OlD, and Xmin and Cmin are set
to the identity of the current interaction, the remaining five fields are left blank.
When a record is updated, two operations take place. First, Xmax and Cmay are
set to the identity of the current interaction in the record being replaced to indi-
cate that it is no longer valid. Second, a new record is inserted into the data base
with the proposed replacement values for the data fields. Moreover, OlD is set to
the OD of the record being replaced, and Xmin and Cmin are set to the identity of
the current interaction. When a record is deleted, Xmax and Cmax ar- set to the
identity of the current interaction in the record to be deleted.

When a record is updated, the new version usually differs from the old version
in only a few fields. In order to avoid the space cost of a complete new record, the
following compression technique has been adopted. The initial record is stored
uncompressed and called the anchor point. Then, the updated record is
differenced against the anchor point and only the actual changes are stored. More-
over, PTR is altered on the anchor point to point to the updated record, which is
called a delta record. Successive updates generate a one-way linked list or delta
records off an initial anchor point. Hopefully most delta record are on the same
operating system page as the anchor point since they will typically be small
objects.

It is the expectation that POSTGRES would be used as a local data manager
in a distributed data base system. Such a distributed system would be expected to
maintain multiple copies of all important POSTGRES objects. Recovery from hard
crashes, i.e. one for which the disk cannot be read, would occur by switching to
some other copy of the object. In a non-distributed system POSTGRES will allow a
user to specify that he wishes a second copy of specific objects with the command:

mirror rel-name

Some operating systems (e.g. VMS (DEC86] and Tandem [BARTB1]) already sup-
port mirrored files, so special DBMS code will not be necessary in these environ-
ments. Hopefully, mirrored files will become a standard operating systems service
in most environments in the future.

4

2.3. Time Management
The POSTGRES query language, POSTQUEL allows a user to request the

salary of Mike using the following syntax.
retrieve (EMP.salary) where EMP.name = "Mike"

To support access to historical tuples, the query language is extended as follows:

retrieve (EMPsalary) using EMPT] where EMP.name = "Mike"
The scope of this command is the EMP relation as of a specific time, 1, and Mike's
salary will be found as of that time. A variety of formats for T will be allowed, and
a conversion routine will be called to convert times to the 32 bit unsigned integers
used internally. POSTGRES constructs a query plan to find qualifying records in
the normal fashion. However, each accessed tuple must be additionally checked for
validity at the time desired in the user's query. In general, a record is valid at
time T if any of the following are true:

Tmin < T and Xmin is a committed transaction and either-
Xmax is not a committed transaction or
Xmax is null or
Tmax >T

In fact, to allow a user to read uncommitted records that were written by a
different command within his transaction, the actual test for validity is the follow-
ing more complex condition.

Xmin = my-transaction and Cmin I= my-command
or

Tmin < T and Xmin is a committed transaction and either:.
(Xmax is not a committed transaction and Xmax ! = my-transaction) or
(Xmax = my-transaction and Cmax = my-command)
Xmax is null or
Tmax > T or

If T is not specified, then T = "now" is the default value, and a record is valid at
time, "now" if

Xmin = my-transaction and Cmi != my-command
or

Xmin is a committed transaction and either
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null

More generally, Mike's salary history over a range of times can be retrieved
by:

retrieve (EMP.Tmin, EMP.Tmax, EMP.salary)
using EMPtT1,T21 where EMP.name = "Mike"

This command will find all salaries for Mike along with their starting and ending
times as long as the salary is valid at some point in the interval, (TI, T21. In gen-
eral, a record is valid in the interval [T1,T2] if:

Xmin = my-transaction and Cmin !---my-command
or

5

Tmin < T2 and Xmin is a committed transaction and either:
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null or
Tmax > TI

Either T1 or T2 can be omitted and the defaults are respectively Ti = 0 and T2 =
+infinity

Special programs (such as debuggers) may want to be able to access uncom-
mitted records. To facilitate such access, we define a second specification for each
relation, for example:

retrieve (EMPsalary) using all-EMP[T] where EMP.name = "Mike"

An EMP record is in all-EMP at time T if
Tmin < T and (Tmax > T or Tmax = null)

Intuitively, all-EMP[Tl is the set of all tuples committed, aborted or in-progress at
time T.

Each accessed magnetic disk record must have one of the above tests per-
formed. Although each test is potentially CPU and 1/0 intensive, we are not
overly concerned with CPU resources because we do not expect the CPU to be a
significant bottleneck in next generation systems. This point is discussed further
in Section 5. Moreover, the CPU portion of these tests can be easily committed to
custom logic or microcode or even a co-processor if it becomes a bottleneck.

There will be little or no 1/0 associated with accessing the status of any tran-
saction, since we expect the transaction log (or its associated bloom filter) to 'be in
main memory. We turn in the next subsection to avoiding 1/0 when evaluating
the remainder of the above predicates.

2.4. Concurrency Control and Timestamp Management

It would be natural to assign a timestamp to a transaction at the time it is
started and then fill in the timestamp field of each record as it is updated by the
transaction. Unfortunately, this would require POSTGRES to process transactions
logically in timestamp order to avoid anomolous behavior. This is equivalent to
requiring POSTGRES to use a concurrency control scheme based on timestamp
ordering (e.g. (BERN80]. Since simulation results have shown the superiority of
conventional locking [AGRA85], POSTGRES uses instead a standard two-phase
locking policy which is implemented by a conventional main memory lock table.

Therefore, Tmin and Tmax must be set to the commit time of each transaction
(which is the time at which updates logically take place) in order to avoid anomo-
lous behavior. Since the commit time of a transaction is not known in advance,
Tmin and Tmax cannot be assigned values at the time that a record is written.

We use the following technique to fill in these fields asynchronously.
POSTGRES contains a TIME relation in which the commit time of each transac-
tion is stored. Since timestamps are 32 bit unsigned integers, byte positions 4*j
through 4*j + 3 are reserved for the commit time of transaction j. At the time a
transaction commits, it reads the current clock time and stores it in the appropri-
ate slot of TIME. The tail of the TIME relation can be stored in stable main

6

memory to avoid the I/O that this update would otherwise entail.

Moreover, each relation in a POSTGRES data base is tagged at the time it is
created with one of the following three designations:

no archive: This indicates that no historical access to relations is required.

light archive: This indicates that an archive is desired but little access to it
is expected.

heavy archive: This indicates that heavy use will be made of the archive.

For relations with "no archive" status, Tmin and Tmax are never filled in, since
access to historical tuples is never required. For such relations, only POSTQUEL
commands specified for T = "now" can be processed. The validity check for T =
"now" requires access only to the POSTGRES LOG relation which should be con-
tained in the buffer pool. Hence, the test consumes no 1/0 resources.

If "light archive" is specified, then access to historical tuples is allowed.
Whenever Tmit. or Tmax must be compared to some specific value, the commit
time of the approp:.ate transaction is retrieved from the TIME relation to make
the comparison. Access to historical records will be slowed in the "light archive"
situation by this requirement to perform an I/O to the TIME relation for each
timestamp value required. This overhead will only be tolerable if archival records
are accessed a very small number of times in their lifetime (about 2-3).

In the "heavy archive" condition, the run time system must look up the com-
mit time of a transaction as in the "light archive" case. However, it then writes
the value found into Tmin or Tmax, thereby turning the read of a historical record
into a write. Any subsequent accesses to the record will then be validatable
without the extra access to the TIME relation. Hence, the first access to an
archive record will be costly in the "heavy archive" case, but subsequent ones will
will incur no extra overhead.

In addition, we expect to explore the utility of running another system demon
in background to asynchronously fill in timestamps for "heavy archive" relations.

2.5. Record Access

Records can be accessed by a sequential scan of a relation. In this case, pages
of the appropriate file are read in a POSTGRES determined order. Each page con-
tains a pointer to the next and the previous logical page; hence POSTGRES can
scan a relation by following the forward linked list. The reverse pointers are
required because POSTGRES can execute query plans either forward or backward.
Additionally, on each page there is a line table as in [STON76] containing pointers
to the starting byte of each anchor point record on that page.

Once an anchor point is located, the delta records linked to it can be con-
structed by following PTR and decompressing the data fields. Although decompres-
sion is a CPU intensive task, we feel that CPU resources will not be a bottleneck
in future computers as noted earlier. Also, compression and decompression of
records is a task easily committed to microcode or a separate co-processor.

7

An arbitrary number of secondary indexes can be constructed for any base
relation. Each index is maintained by an access method. and provides keyed
access on a field or a collection of fields. Each access method must provide all the
procedures for the POSTGRES defined abstraction for access methods. These
include get-record-by-key, insert-record, delete-record, etc. The POSTGRES run
time system will call the various routines of the appropriate access method when
needed during query processing.

Each access method supports efficient access for a collection of operators as
noted in [STON86a]. For example, B-trees can provide fast access for any of the
operators:

{=, <=, <, >, >=l

Since each access method may be required to work for various data types, the col-
lection of operators that an access methods will use for a specific data type must be
registered as an operator class. Consequently, the syntax for index creation is:

index on rel-name is index-name ({key-i with operator-class-il)
using access-method-name and performance-parameters

The performance-parameters specify the fill-factor to be used when loading the
pages of the index, and the minimum and maximum number of pages to allocate.
The following example specifies a B-tree index on a combined key consisting of an
integer and a floating point number.

index on EM? is EMP-INDEX (age with integer-ops, salary with float-ops)
using B-tree and fill-factor = .8

The run-time system handles secondary indexes in a somewhat unusual way.
When a record is inserted, an anchor point is constructed for the record along with
index entries for each secondary index. An entry in a secondary index consists of a
key(s) plus a variable number of locks that are used by the rules system as noted
in [STONB71. Additionally, there is a pointer to an entry in the line table on the
page where the indexed record resides. This line table entry in turn points to the
byte-offset of the actual record. This single level of indirection allows anchor
points to be moved on a data page without requiring maintenance of secondary
indexes.

When an existing record is updated, a delta record is constructed and chained
onto the appropriate anchor record. If no indexed field has been modified, then no
maintenance of secondary indexes is required. If an indexed field changed, then an
entry is added to the appropriate index containing the new key(s) and a pointer to
the anchor record. There are no pointers in secondary indexes directly to delta
records. Consequently, a delta record can only be accessed by obtaining its
corresponding anchor point and chaining forward.

The POSTGRES query optimizer constructs plans which may specify scanning
portions of various secondary indexes. The run time code to support this function
is relatively conventional except for the fact that each secondary index entry points
to an anchor point and a chain of delta records, all of which must be inspected.
Valid records that actually match the key in the index are then returned to higher
level software.

8

Use of this technique guarantees that record updates only generate I/O
activity in those secondary indexes whose keys change. Since updates to keyed
fields are relatively uncommon, this ensures that few insertions must be performed
in the secondary indexes.

Some secondary indexes which are hierarchical in nature require disk pages
to be placed in stable storage in a particular order (e.g. from leaf to root for page
splits in B +-trees). POSTGRES will provide a low level command

order block-1 block-2
to support such required orderings. This command is in addition to the required
pin and unpin commands to the buffer manager.

3. THE ARCHIVAL SYSTEM

3.1. Vacuuming the Disk

An asynchronous demon is responsible for sweeping records which are no
longer valid to the archive. This demon, called the vacuum cleaner, is given
instructions using the following command:

vacuum rel-name where QUAL
Here QUAL is a valid POSTQUEL qualification. For example, the following
vacuum command specifies vacuuming records over 30 days old:

vacuum EMP where "now" - EMP.Tmax > "30 days"

The vacuum cleaner finds candidate records for archiving which satisfy one of the
following conditions:

Xmax is non empty and is a committed transaction and QUAL
Xmax is non empty and is an aborted transaction
Xmin is non empty and is an aborted transaction

In the second and third cases, the vacuum cleaner simply reclaims the space occu-
pied by such records. In the first case, a record must be copied to the archive
unless "no-archive" status is set for this relation. Additionally, if "heavy-archive"
is specified, Tmin and Tmax must be filled in by the vacuum cleaner during
archiving if they have not already been given values during a previous access.
Moreover, if an anchor point and several delta records can be swept together, the
vacuuming process will be more efficient. Hence, the vacuum cleaner will gen-
erally sweep a chain of several records to the archive at one time.

This sweeping must be done very carefully so that no data is irrecoverably
lost. First we discuss the format of the archival medium, then we turn to the
sweeping algorithm and a discussion of its cost.

3.2. The Archival Medium
The archival storage system is compatible with WORM devices, but is not res-

tricted to such systems. We are building a conventional extent-based file system
on the archive, and each relation is allocated to a single file. Space is allocated in
large extents and the next one is allocated when the current one is exhausted. The
zpace allocation map for the archive is kept in a magnetic disk relation. Hence, it
is possible, albeit very costly, to sequentially scan the historical version of a

9

relation.

Moreover, there are an arbitrary number of secondary indexes for each rela-
tion in the archive. Since historical accessing patterns may be different than
accessing patterns for current data, we do not restrict the archive indexes to be the
same as those for the magnetic disk data base. Hence, archive indexes must be
explicitly created using the following extension of the indexing command:

index on {archive} rel-name is index-name ({key-i with operator-class-il)
using access-method-name and performance-parameters

Indexes for archive relations are normally stored on magnetic disk. However, since
they may become very large, we will discuss mechanisms in the next section to
support archive indexes that are partly on the archive medium.

The anchor point and a collection of delta records are concatenated and writ-
ten to the archive as a single variable length record. Again secondary index
records must be inserted for any indexes defined for the archive relation. An index
record is generated for the anchor point for each archive secondary index. More-
over, an index record must be constructed for each delta record in which a secon-
dary key has been changed.

Since the access paths to the portion of a relation on the archive may be
different than the access paths to the portion on magnetic disk, the query optim-
izer must generate two plans for any query that requests historical data. Of
course, these plans can be executed in parallel if multiple processors are available.
In addition, we are studying the decomposition of each of these two query plans
into additional parallel pieces. A report on this subject is in preparation [BHID87].

3.3. The Vacuum Process
Vacuuming is done in three phases, namely:

phase 1: write an archive record and its associated index records
phase 2: write a new anchor point in the current data base
phase 3: reclaim the space occupied by the old anchor point and its delta

records

If a crash occurs while the vacuum cleaner is writing the historical record in phase
1, then the data still exists in the magnetic disk data base and will be revacuumed
again at some later time. If the historical record has been written but not the
associated indexes, then the archive will have a record which is reachable only
through a sequential scan. If a crash occurs after some index records have been
written, then it will be possible for the same record to be accessed in a magnetic
disk relation and in an archive relation. In either case, the duplicate record will
consume system resources; however, there are no other adverse consequences
because POSTGRES is a relational system and removes duplicate records during
processing.

When the record is safely stored on the archive and indexed appropriately, the
second phase of vacuuming can occur. This phase entails computing a new anchor
point for the magnetic disk relation and adding new index records for it. This
anchor point is found by starting at the old anchor point and calculating the value
of the last delta by moving forward through the linked list. The appropriate
values are inserted into the magnetic disk relation, and index records are inserted

10

into all appropriate index. When this phase is complete, the new anchor point
record is accessible directly from secondary indexes as well as by chaining forward
from the old anchor point. Again, if there is a crash during this phase a record
may be accessible twice in some future queries, resulting in additional overhead
but no other consequences.

The last phase of the vacuum process is to remove the original anchor point
followed by all delta records and then to delete all index records that pointed to
this deleted anchor point. If there is a crash during this phase, index records may
exist that do not point to a correct data record. Since the run-time system must
already check that data records are valid and have the key that the appropriate
index record expects them to have, this situation can be checked using the same
mechanism.

Whenever there is a failure, the vacuum cleaner is simply restarted after the
failure is repaired. It will re-vacuum any record that was in progress at some later
time. If the crash occurred during phase 3, the vacuum cleaner could be smart
enough to realize that the record was already safely vacuumed. However, the cost
of this checking is probably not worthwhile. Consequently, failures will result in a
slow accumulation of extra records in the archive. We are depending on crashes to
be infrequent enough that this is not a serious concern.

We now turn to the cost of the vacuum cleaner.

3.4. Vacuuming Cost

We examine two different vacuuming situations. In the first case we assume
that a record is inserted, updated K times and then deleted. The whole chain of
records from insertion to deletion is vacuumed at once. In the second case, we
assume that the vacuum is run after K updates, and a new anchor record must be
inserted. In both cases, we assume that there are Z secondary indexes for both the
archive and magnetic disk relation, that no key changes are made during these K
updates, and that an anchor point and all its delta records reside on the same
page. Table 1 indicates the vacuum cost for each case. Notice that vacuuming

whole chain K updates

archive-writes 1+Z 1+Z
disk-reads I 1
disk-writes 1+Z 1+Z

I/O Counts for Vacuuming
Table I

II

consumes a constant cost. This rather surprising conclusion reflects the fact that a
new anchor record can be inserted on the same page from which the old anchor
point is being deleted without requiring the page to be forced to stable memory in
between the operations. Moreover, the new index records can be inserted on the
same page from which the previous entries are deleted without an intervening 1/0.
Hence, the cost PER RECORD of the vacuum cleaner decreases as the length of the
chain, K, increases. As long an anchor point and several delta records are vacu-
umed together, the cost should be marginal.

4. INDEXING THE ARCHIVE

4.1. Magnetic Disk Indexes

The archive can be indexed by conventional magnetic disk indexes. For
example, one could construct a salary index on the archive which would be helpful
in answering queries of the form:

retrieve (EMP.name) using EMP [, where EMP.salary = 10000

However, to provide fast access for queries which restrict the historical scope of
interest, e.g.

retrieve (EMPname) using EMP [lil/87,] where EMP.salary = 10000

a standard salary index will not be of much use because the index will return all
historical salaries of the correct size whereas the query only requested a small sub-
set. Consequently, in addition to conventional indexes, we expect time-oriented
indexes to be especially useful -for archive relations. Hence, the two fields, Tmin
and Tmax, are stored in the archive as a single field, 1, of type interval. An R-tree
access method (GUTM84] can be constructed to provide an index on this interval
field. The operators for which an R.tree can provide fast access include "overlaps"
and "contained-in*. Hence, if these operators are written for the interval data
type, an R-tree can be constructed for the EMP relation as follows:

index on archive EMP is EMP-INDEX (I with interval-ops)
using R-tree and fill-factor = .8

This index can support fast access to the historical state of the EMP relation at
any point in time or during a particular period.

To utilize such indexes, the POSTGRES query planner needs to be slightly
modified. Note that POSTGRES need only run a query on an archive relation if
the scope of the relation includes some historical records, Hence, the query for an
archive relation must be of the form:

...using EMP(T]

or

...using EMP[T1,T2]

The planner converts the first construct into:

...where T contained-in EMP.I

and the second into:

...where interval(T1,T2) overlaps EMP.I

Since all records in the archive are guaranteed to be valid, these two qualifications

12

can replace all the low level code that checks for record validity on the magnetic
! disk described in Section 2.3. With this modification, the query optimizer can use

the added qualification provide a fast access path through an interval index if one
exists.

Moreover, we expect combined indexes on the interval field along with some
data value to be very attractive, e.g:

index on archive EMP is EMP-INDEX
(I with interval-ops, salary with float-ops)
using R-tree and fill-factor = .8

Since an R-tree is a multidimensional index, the above index supports intervals
which exist in a two dimensional space of time and salaries. A query such as:

retrieve (EMP.name) using EMPT1,T21 where EMP.salary = 10000
will be turned into:

retrieve (EMP.name) where EMP.salary = 10000
and interval(T1,T2) overlaps EMP.I

The two clauses of the qualification define another interval in two dimensions and
conventional R-tree processing of the interval can be performed to use both
qualifications to advantage.

Although data records will be added to the archive at the convenience of the
vacuum cleaner, records will be generally inserted in ascending time order. Hence,
the pbor performance reported in [ROUS85] for R-trees should be averted by the
nearly sorted order in which the records will. be inserted. Performance tests to
ascertain this speculation are planned. We now turn to a discussion of R-tree
indexes that are partly on both magnetic and archival mediums.

4.2. Combined Media Indexes
We begin with a small space calculation to illustrate the need for indexes that

use both media. Suppose a relation exists with 10*6 tuples and each tuple is
modified 30 times during the lifetime of the application. Suppose there are two
secondary indexes for both the archive and the disk relation and updates never
change the values of key fields. Moreover, suppose vacuuming occurs after the 5th
delta record is written, so there are an average of 3 delta records for each anchor
point. Assume that anchor points consume 200 bytes, delta records consume 40
bytes, and index keys are 10 bytes long.

With these assumptions, the sizes in bytes of each kind of object are indicated
in Table 2. Clearly, 10**6 records will consume 200 mbytes while 3 x 10**6 delta
records will require 120 mbytes. Each index record is assumed to require a four
byte pointer in addition to the 10 byte key; hence each of the two indexes will take
up 14 mbytes. There are 6 anchor point records on the archive for each of the
10*6 records each concatenated with 4 delta records. Hence, archive records will
be 360 bytes long, and require 2160 mbytes. Lastly, there is an index record for
each of the archive anchor points; hence the archive indexes are 6 times as large as
the magnetic disk indexes.

13

object mbytes

disk relation anchor points 200
deltas 120
secondary indexes 28

archive 2160
archive indexes 168

Sizes of the Various Objects
Table 2

Two points are evident from Table 2. First, the archive can become rather
large. Hence, one should vacuum infrequently to cut down on the number of
anchor points that occur in the archive. Moreover, it might be desirable to
differentially code the anchor points to save space. The second point to notice is
that the archive indexes consume a large amount of space on magnetic disk. if the
target relation had three indexes instead of two, the archive indexes would con-
sume a greater amount of space than the magnetic disk relation. Hence, we
explore in this section data structures that allow part of the index to migrate to
the archive. Although we could alternatively consider index structures that are
entirely on the archive, such as those proposed in [VITT85], we believe that com-
bined media structures will substantially outperform structures restricted to the
archive. We plan performance comparisons to demonstrate the validity of this
hypothesis.

Consider an R-tree storage structure in which each pointer in a non-leaf node
of the R-tree is distinguished to be either a magnetic disk page pointer or an
archive page pointer. If pointers are 32 bits, then we can use use the high-order
bit for this purpose thereby allowing the remaining 31 bits to specify 2**31 pages
on magnetic disk or archive storage. If pages are SK bytes, then the maximum
size of an archive index is 2**44 bytes (about 1.75 x 10**13 bytes), clearly ade-
quate for almost any application. Moreover, the leaf level pages of the R-tree con-
tain key values and pointers to associated data records. These data pointers can be
48 bytes long, thereby allowing the data file corresponding to a single historical
relation to be 2**48 bytes long (about 3.0 x 10**14 bytes), again adequate for most
applications.

We assume that the archive may be a write-once-read-many (WORM) device
that allows pages to be initially written but then does not allow any overwrites of
the page. With this assumption, records can only be dynamically added to pages

14

that reside on magnetic disk. Table 3 suggests two sensible strategies for the
placement of new records when they are not entirely contained inside some R-tree
index region corresponding to a magnetic disk page.

Moreover, we assume that any page that resides on the archive contains
pointers that in turn point only to pages on the archive. This avoids having to
contend with updating an archive page which contains a pointer to a magnetic disk
page that splits.

Pages in an R-tree can be moved from magnetic disk to the archive as long as
they contain only archive page pointers. Once a page moves to the archive, it
becomes read only. A page can be moved from the archive to the magnetic disk if
its parent page resides on magnetic disk. In this case, the archive page previously
inhabited by this page becomes unusable. The utility of this reverse migration
seems limited, so we will not consider it further.

We turn now to several page movement policies for migrating pages from
magnetic disk to the archive and use the parameters indicated in Table 4 in the
discussion to follow. The simplist policy would be to construct a system demon to
"vacuum" the index by moving the leaf page to the archive that has the smallest
value for Tmax, the left-hand end of its interval. This vacuuming would occur
whenever the R-tree structure reached a threshold near its maximum size of F disk
pages. A second policy would be to choose a worthy page to archive based both on
its value of Tmax and on percentage fullness of the page. In either case, insertions
would be made into the R-tree index at the lower left-hand part of the index while

P1 allocate to the region which has to be expanded the least
P2 allocate to the region whose maximum time has to be expanded the least

Record Insertion Strategies
Table 3

F number of magnetic disk blocks usable for the index
U update frequency of the relation being indexed
L record size in the index being constructed
B block size of magnetic disk pages

Parameters Controlling Page Movement
Table 4

15

pro-

the demon would be archiving pages in the lower right hand part of the index.
Whenever an intermediate R-tree node had descendents all on the archive, it could
in turn be archived by the demon.

For example, if B is 8192 bytes, L is 50 bytes and there is a five year archive
of updates at a frequency, U of 1 update per second, then 1.4 x 10*=6 index blocks
will be required resulting in a four level R-tree. F of these blocks will reside on
magnetic disk and the remainder will be on the archive. Any insertion or search
will require at least 4 accesses to one or the other storage medium.

A third movement policy with somewhat different performance characteristics
would be to perform "batch movement". In this case one would build a magnetic
disk R-tree until its size was F blocks. Then, one would copy the all pages of the
R-tree except the root to the archive and allocate a special "top node" on magnetic
disk for this root node. Then, one would proceed to fill up a second complete R-tree
of F-1 pages. While the second R-tree was being built, both this new R-tree and the
one on the archive would be searched during any retrieval request. All inserts
would, of course, be dLrected to the magnetic disk R-tree. When this second R-tree
was full, it would be copied to the archive as before and its root node added to the
existing top node. The combination might cause the top node to overflow, and a
conventional R-tree split would be accomplished. Consequently, the top node
would become a conventional R-tree of three nodes. The filling process would start
again on a 3rd R-tree of F-3 nodes. When this was full, it would be archived and
its root added to the lower left hand page of the 3 node R-tree.

Over time, there would continue to be two R-trees. The first would be com-
pletely on magnetic disk and periodically archived. As long as the height of this
R-tree at the time it is archived is a constant, H, then the second R-tree of height,
Hi, will have the bottom H-1 levels on the archive. Moreover, insertions into the
magnetic disk portion of this R-tree are always on the left-most page. Hence, the
pages along the left-side of the tree are the only ones which will be modified; other
pages can be archived if they point entirely to pages on the archive. Hence, some
subcollection of the pages on the top Hi-H + 1 levels remain on the magnetic disk.
Insertions go always to the first R-tree while searches go to both R-trees. Of
course, there are no deletions to be concerned with.

Again if B is 8192 bytes, L is 50 bytes and F is 6000 blocks, then H will be 3
and each insert will require 3 magnetic disk accesses. Moreover, at 1 update per
second, a five year archive will require a four level R-tree whose bottom two levels
will be on the archive and a subcollection of the top 2 levels of 100-161 blocks will
be on magnetic disk. Hence, searches will require descending two R-trees with a
total depth of 7 levels and will be about 40 percent slower than either of the single
R-tree structures proposed. On the other hand, the very common operation of
insertions will be approximately 25 percent faster.

5. PERFORMANCE COMPARISON

5.1. Assumptions

In order to compare our storage system with a conventional one based on
write-ahead logging (WAL), we make the following assumptions.

16

1) Portions of the buffer pool may reside in non-volatile main memory

2) CPU instructions are not a critical resource, and thereby only I/O operations are
counted.

The second assumption requires some explanation. Current CPU technology is
driving down the cost of a MIP at a rate of a factor of two every couple of years.
Hence, current low-end workstations have a few MIPs of processing power. On the
other hand, disk technology is getting denser and cheaper. However, disks are not
getting faster at a significant rate. Hence, one can still only expect to read about
30 blocks per second off of a standard disk drive. Current implementations of data
base systems require several thousand instructions to fetch a page from the disk
followed by 1000-3000 instructions per data record examined on that page. As a
simple figure of merit, assume 30000 instructions are required to process a disk
block. Hence, a 1 MW CPU will approximately balance a single disk. Currently,
workstations with 3-5 MIPs are available but are unlikely to be configured with 3-
5 disks. Moreover, future workstations (such as SPUR and FIREFLY) will have
10-30 MIPs. Clearly, they will not have 10-30 disks unless disk systems shift to
large numbers of SCSI oriented single platter disks and away from current SMD
disks.

Put differently, a SUN 3/280 costs about $5000 per MIP, while an SMD disk
and controller costs about $12,000. Hence, the CPU cost to support a disk is much
smaller than the cost of the disk, and the major cost of data base hardware can be
expected to be in the disk system. As such, if an installation is found to be CPU
bound, then additional CPU resources can be cheaply added until the system
becomes balanced.

We analyze three possible situations:

large-SM: an ample amount of stable main memory is available
small-SM: a modest amount of stable main memory is available
no-SM: no stable main memory is availble

In the first case we assume that enough stable main memory is available for
POSTGRES and a WAL system to use so that neither system is required to force
disk pages to secondary storage at the time that they are updated. Hence, each
system will execute a certain number of 1/0 operations that can be buffered in
stable memory and written out to disk at some convenient time. We count the
number of such non-forced 1/0 operations that each system will execute, assum-
ing all writes cost the same amount. For both systems we assume that records do
not cross page boundaries, so each update results in a single page write. Moreover,
we assume that each POSTGRES delta record can be put on the same page as its
anchor point. Next, we assume that transactions are a single record insertion,
update, deletion or an aborted update. Moreover, we assume there are two secon-
dary indexes on the relation affected and that updates fail to alter either key field.
Lastly, we assume that a write ahead log will require 3 log records (begin transac-
tion, the data modification, and end transaction), with a total length of 400 bytes.
Moreover, secondary index operations are not logged and thereby the log records
for 10 transactions will fit on a conventional 4K log page.

17

In the second situation we assume that a modest amount of stable main
memory is available. We assume that the quantity is sufficient to hold only the
tail of the POSTGRES log and the tail of the TIME relation. In a WAL system, we
assume that stable memory can buffer a conventional log turning each log write
into one that need not be synchronously forced out to disk. This situation (small-
SM) should be contrasted with the third case where no stable memory at all is
available (no-SM). In this latter cases, some writes must be forced to disk by both
types of storage systems.

In the results to follow we ignore the cost that either kind of system would
incur to mirror the data for high availability. Moreover, we are also ignoring the
WAL cost associated with checkpoints. In addition, we assume that a WAL system
never requires a disk read to access the appropriate un-do log record. We are also
ignoring the cost of vacuuming the disk in the POSTGRES architecture.

5.2. Performance Results
Table 5 indicates the number of I/O operations each of the four types of tran-

sactions must execute for the assumed large-SM configuration. Since there is
ample stable main memory, neither system must force any data pages to disk and
only non-forced I/Os must be done. An insert requires that a data record and two
index records be written by either system. Moreover, 1/10th of a log page will be
filled by the conventional system, so every 10 transactions there will be another
log page which must be eventually written to disk. In POSTGRES the insertions
to the LOG relation and the TIME relation generate an 1/0 every 65536 and 2048
transactions respectively, and we have ignored this small number in Table 5. Con-.
sequently, one requires 3 non-forced I/Os in POSTGRES and 3.1 in a conventional
system. The next two columns in Table I can be similarly computed. The last
column summarizes the I/Os for an aborted transaction. In POSTGRES the
updated page need not be rewritten to disk. Hence, no 1/Os are strictly necessary;
however, in all liklihood, this optimization will not be implemented. A WAL sys-
tem will update the data and construct a log record. Then the log record must be
read and the data page returned to its original value. Again, a very clever system
could avoid writing the page out to disk, since it is identical to the disk copy.
Hence, for both systems we indicate both the optimized number of writes and the
non-optimized number. Notice in Table 5 that POSTGRES is marginally better
than a WAL system except for deletes where it is dramatically better because it
does not delete the 2 index records. We now turn to cases where POSTGRES is
less attractive.

Table 6 repeats the I/O counts for the small-SM configuration. The WAL
configuration performs exactly as in Table 5 while the the POSTGRES data pages
must now be forced to disk since insufficient stable main memory is assumed to
hold them. Notice that POSTGRES is still better in the total number of 1/0 opera-
tions; however the requirement to do them synchronously will be a major disad-
vantage.

Table 7 then indicated the I/O counts under the condition that NO stable
main memory is available. Here the log record for a conventional WAL system
must be forced to disk at commit time. The other writes can remain in the buffer

18

Insert Update Delete Abort

WAL-force 0 0 0 0
WAL-no-force 3.1 1.1 3.1 0.1 or 1.1

POSTGRES-force 0 0 0 0
POSTGRES-non-force 3 1 1 0 or 1

1/O Counts for the Primitive Operations
large-SM Configuration

Table 5

Insert Update Delete Abort

WAL-force 0 0 0 0
WAL-no-force 3.1 1.1 3.1 0.1 or 1.1

POSTGRES-force 3 1 1 0 or 1
POSTGRES-non-force 0 0 0 0

1/0 Counts for Ahe Primitive Operations
small-SM Configuration

Table 6

pool and be written at a later time. In POSTGRES the LOG bit must be forced out
to disk along with the insert to the TIME relation. Moreover, the data pages must
be forced as in Table 6. In this case POSTGRES is marginally poorer in the total
number of operations; and again the synchronous nature of these updates will be a
significant disadvantage.

In summary, the POSTGRES solution is preferred in the large-SM
configuration since all operations require less I/Os. In Table 6 the total number of
I/Os is less for POSTGRES; however, synchronous 1/0 is required. Table 7 shows a
situation where POSTGRES is typically more expensive. However, group commits
(DEWI84] could be used to effectively convert the results for either type of system
into the ones in Table 6. Consequently, POSTGRES should be thought of as fairly
competitive with current storage architectures. Moreover, it has a considerable

19

Insert Update Delete Abort

WAL-force I 1 1 1
WAL-no-force 3 1 3 0 or I
POSTGRES-force 5 3 3 1
POSTGRES-non-force 0 0 0 0 or 1

110 Counts for the Primitive Operations
no-SM Configuration

Table 7

advantage over WAL systems in that recovery time will b e instantaneous while
requiring a substantial amount of time in a WAL architecture.

6. CONCLUSIONS
This paper has described the storage manager that is being constructed for

POSTGRES. The main points guiding the design of the system were:

1) instantaneous recovery from crashes

2) ability to keep archival records on an archival medium

3) housekeeping chores should be done asynchronously

4) concurrency control based on conventional locking

The first point should be contrasted with the standard write-ahead log (WAL)
storage managers in widespread use today.

In engineering application one often requires the past history of the data base.
Moreover, even in business applications this feature is sometimes needed, and the
now famous TPI benchmark assumes that the application will maintain an
archive. It makes more sense for the data manager to do this task internally for
applications that require the service.

The third design point has been motivated by the desire to run multiple con-
current processes if there happen to be extra processors. Hence storage manage-
ment functions can occur in parallel on multiple processors. Alternatively, some
functions can be saved for idle time on a single processor. Lastly, it allows
POSTGRES code to be a collection of asynchronous processes and not a single large
monolithic body of code.

The final design point reflects our intuitive belief, confirmed by simulations,
that standard locking is the most desirable concurrency control strategy.

20

Moreover, it should be noted that read-only transactions can be optionally coded to
run as of some point in the recent past. Since historical commands set no locks,
then read-only transactions will never interfere with transactions performing
updates or be required to wait. Consequently, the level of contention in a
POSTGRES data base may be a great deal lower than that found in conventional
storage managers.

The design of the POSTGRES storage manager has been sketched and a brief
analysis of its expected performance relative to a conventional one has been per-
formed. If the analysis is confirmed in practice, then POSTGRES will give similar
performance compared to other storage managers while providing the extra service
of historical access to the data base. This should prove attractive in some environ-
ments.

At the moment, the magnetic disk storage manager is operational, and work
is proceeding on the vacuum cleaner and the layout of the archive. POSTGRES is
designed to support extendible access methods, and we have implemented the B-
tree code and will provide R-trees in the near future. Additional access methods
can be constructed by other parties to suit their special needs. When the remain-
ing pieces of the storage manager are complete, we plan a performance '"bakeoff"
both against conventional storage managers as well as against other storage
managers (such as [CARE86, COPE84]) with interesting properties.

REFERENCES

[AGRA85] Agrawal, R. et. al., "Models for Studying Concurrency Control
Performance Alternatives and Implications," Proc. 1985
ACM-SIGMOD Conference on Management of Data, Austin,
Tx., May 1985.

[ASTR76] Astrahan, M. et. al., "System R: A Relational Approach to
Data," ACM-TODS, June 1976.

[BART81] Bartlett, J., "A Non-STOP Kernel," Proc. Eighth Symposium
on Operating System Principles," Pacific Grove, Ca., Dec.
1981.

[BERN80] Bernstein, P. at. al., "Concurrency Control in a System for
Distributed Databases (SDD-1)," ACM-TODS, March 1980.

[BHID87] Bhide, A., "Query processing in Shared Memory Multiproces-
sor Systems," (in preparation).

[CARE86] Carey, M. et. al., "Object and File Management in the
EXODUS Database System," Proc. 1986 VLDB Conference,
Kyoto, Japan, August 1986.

[COPE84] Copeland, G. and D. Maier, "Making Smalltalk a Database
System," Proc. 1984 ACM-SIGMOD Conference on Manage-
ment of Data, Boston, Mass. June 1984.

[DEC86 Digital Equipment Corp., "VAX/VMS V4.0 Reference
Manual," Digital Equipment Corp., Maynard, Mass., June
1986.

21

[DEWI84] Dewitt, D. et. al., "Implementation Techniques for Main
Memory Database Systems," Proc. 1984 ACM-SIGMOD
Conference on Management of Data, Boston, Mass., June
1984.

[GRAY781 Gray, J., "Notes on Data Base Operating Systems," IBM
Research, San Jose, Ca., RJ1879, June 1978.

[GUTM84] Gutman, A., "R-trees: A Dynamic Index Structure for Spatial
Searching," Proc. 1984 ACM-SIGMOD Conference on
Management of Data, Boston, Mass. June 1984.

[HILL85] Hill, M., et al. "Design Decisions in SPUR," Computer Maga-
zine, vol.19, no.11, November 1986.

[ROUS85] Roussoupoulis, N. and Leifker, D., "Direct Spatial Search on
Pictorial Databases Using Packed R-trees," Proc. 1985 ACM.
SIGMOD Conference on Management of Data, Austin, Tx.,
May 1985.

[SEQU85] Sequent Computer Co., "The SEQUENT Balance Reference
Manual," Sequent Computers, Portland, Ore., 1985.

[SEVR76] Severence, D., and Lohman, G., "Differential Files: Their
Application to the Maintenance of large Databases," ACM-
TODS, June 1976.

[STON76] Stonebraker, M., et. al. "The Design and Implementation of
INGRES," ACM-TODS, September 1976.

[STON86] Stonebraker, M. and Rowe, L., "The Design of POSTGRES,"
Proc. 1986ACM-SIGMOD Conference on Management of
Data, Washington, D.C., May 1986.

[STON86a] Stonebraker, M., "Inclusion of New Types in Relational Data
Base Systems," Proc. Second International Conference on
Data Base Engineering, Los Angeles, Ca., Feb. 1986.

[STON871 Stonebraker, M. et. al., "The Design of the POSTGRES Rules
System," Proc. 1987 IEEE Data Base Engineering Confer-
ence, Los Angeles, Ca., Feb. 1987.

[VITT85] Vitter, J., "An Efficient I/O Interface for Optical Disks,"
ACM.TODS, June 1985.

22

